Hydrodynamic theory for multi-component active polar gels
نویسندگان
چکیده
We develop a generic hydrodynamic theory of active fluids with several components. We take into account polar order and consider the case when one component is viscoelastic. Our theory is motivated by the cytoskeleton which is a network of elastic filaments that are coupled to active processes such as the action of motor proteins which can generate relative forces between filaments as they hydrolyze a fuel (ATP). In addition to the filament gel, the system is embedded in a solvent component and free monomers constitute a third component. We derive constitutive material equations for the combined system which include reactive and dissipative couplings as well as the chemical driving by ATP hydrolysis and a possible chiral symmetry of the filaments. As an illustration of these equations, we discuss an active liquid in a simple shear gradient. New Journal of Physics 9 (2007) 422 PII: S1367-2630(07)51932-4 1367-2630/07/010422+17$30.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
منابع مشابه
Asters, vortices, and rotating spirals in active gels of polar filaments.
We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any polar system with internal energy consumption such as active chemical gels and cytoskeletal netwo...
متن کاملSpontaneous flow transition in active polar gels
– We study theoretically the effects of confinement on active polar gels such as the actin network of eukaryotic cells. Using generalized hydrodynamics equations derived for active gels, we predict, in the case of quasi one-dimensional geometry, a spontaneous flow transition from a homogeneously polarized immobile state for small thicknesses, to a perturbed flowing state for larger thicknesses....
متن کاملA mechanism for cell motility by active polar gels.
We analyse a generic motility model, with the motility mechanism arising by contractile stress due to the interaction of myosin and actin. A hydrodynamic active polar gel theory is used to model the cytoplasm of a cell and is combined with a Helfrich-type model to account for membrane properties. The overall model allows consideration of the motility without the necessity for local adhesion. Be...
متن کاملHydrodynamics of active permeating gels
We develop a hydrodynamic theory of active permeating gels with viscoelasticity in which a polymer network is embedded in a background fluid. This situation is motivated by active processes in the cell cytoskeleton in which motor molecules generate elastic stresses in the network, which can drive permeation flows of the cytosol. Our approach differs from earlier ones by considering the elastic ...
متن کاملHydrodynamics of active
We develop a hydrodynamic theory of active permeating gels with viscoelasticity in which a polymer network is embedded in a background fluid. This situation is motivated by active processes in the cell cytoskeleton in which motor molecules generate elastic stresses in the network, which can drive permeation flows of the cytosol. Our approach differs from earlier ones by considering the elastic ...
متن کامل